

Impaired Methylation - Part Three

Alright, let's talk about some cases. We'll only do a few because we've already done cases for both B12 and folate deficiency, and those are effectively impaired methylation cases.

This patient is a 41-year-old female with poor digestion, irregular bowel symptoms, and some pain for about two years. She became very anemic earlier this year, which was corrected with an iron supplement, and also developed alopecia areata, or hair loss. She was a vegetarian her whole life and vegan for the last two years prior to coming to see me.

Marker	Value	Functional Range	Lab Range
Glucose	87	75 - 90	65 - 99
Hemoglobin A1c	5.8	4.8 - 5.4	4.8 - 5.6
Uric Acid	4.4	3.2 - 5.5	2.5 - 7.1
BUN	12	13 - 18	6 - 24
Creatinine	0.92	0.85 - 1.1	0.57 - 1
BUN/Creatinine Ratio	13	9 - 23	9 - 23
Sodium	141	134 - 140	134 - 144
Potassium	4.5	4.0 - 4.5	3.5 - 5.2
Chloride	102	100 - 106	97 - 108
C02	23	25 - 30	18 - 29
Calcium	9.5	9.2 - 10.1	8.7 - 10.2
Phosphorus	4.2	3.5 - 4.0	2.5 - 4.5
Magnesium	2.3	2.0 - 2.6	1.6 - 2.3
Protein, total	6.9	6.9 - 7.4	6.0 - 8.5
Albumin	4.3	4.0 - 5.0	3.5 - 5.5
Globulin	2.6	2.4 - 2.8	1.5 - 4.5
A/G ratio	1.7	1.5 - 2.0	1.1 - 2.5
Bilirubin, total	0.6	0.1 - 1.2	0.0 - 1.2
Alkaline Phosphatase	57	42 - 107	39 - 117
LDH	142	140 - 180	119 - 226
AST	15	10 - 30	0 - 40
ALT	11	10 - 22	0 - 32
GGT	15	0 - 28	0 - 60
TIBC	351	250 - 350	250 - 450
UIBC	194	150 - 375	131 - 425
Iron	157	85 - 135	27 - 159
Iron saturation	45	15 - 45	15 - 55
Ferritin	28	15 - 120	15 - 150
Vitamin B-12	222	450 - 2000	211 - 946
Vitamin D, 25-hydroxy	9.7	35 - 60	30.0 - 100.0
Cholesterol, total	157	150 - 250	100 - 199
Triglycerides	59	50 - 100	0 - 149
HDL	54	55 - 85	> 39
LDL	91	0 - 175	0 - 99
T. Chol / HDL Ratio	2.9	< 3	0 - 4.4
Triglycerides / HDL Ratio	1.09	< 2	< 3.8
CRP-hs	0.09	< 1.0	0.00 - 3.00
Homocysteine	18.2	< 7.0	0.0 - 15.0

Marker	Value	Functional Range	Lab Range
TSH	1.790	0.5 - 2.5	0.45 - 4.50
T4, total	6.8	6.0 - 12	4.5 - 12
T3 Uptake	26	28 - 35	24 - 39
T3, Total	104	100 - 180	71 - 180
Copper	92		72 - 166
Zinc	65		56 - 134
Zinc / Copper Ratio	0.71	> 0.85	
Serum Methylmalonic Acid (MMA)	645	0 - 325	0 - 378
WBC	3.6	5.0 - 8.0	3.4 - 10.8
RBC	4.44	4.4 - 4.9	3.77 - 5.28
Hemoglobin	12.5	13.5 - 14.5	11.1 - 15.9
Hematocrit	38.5	37 - 44	34 - 46.6
MCV	87	85 - 92	79 - 97
MCH	28.2	27.7 - 32.0	26.6 - 33.0
MCHC	32.5	32 - 35	31.5 - 35.7
RDW	14.2	11.5 - 15.0	12.3 - 15.4
Platelets	261	150 - 415	150 - 379
Neutrophils	49	40 - 60	
Lymphocytes	34	25 - 40	
Monocytes	9	4.0 - 7.0	
Eosinophils	7	0.0 - 3.0	
Basophils	1	0.0 - 3.0	

B12 is almost out of the lab range at 222. Serum MMA is lab-high at 645. Homocysteine was very high at 18.2. Red blood cells were normal, but hemoglobin was 12.5, so this would be B12-deficient functional anemia, and possibly folate too. You can't tell with these labs because we're not seeing FIGLU or serum folate. We weren't running serum folate as part of the case review panel at this point.

Gene & Variation	rsiD	Alleles	Result
COMT V158M	rs4680	AG	+/-
COMT H62H	rs4633	СТ	+/-
COMT P199P	rs769224	GG	-/-
VDR Bsm	rs1544410	СТ	+/-
VDR Taq	rs731236	AG	+/-
MAO A R297R	rs6323	GT	+/-
ACAT1-02	rs3741049	GG	-/-
MTHFR C677T	rs1801133	AA	+/+
MTHFR 03 P39P	rs2066470	GG	-/-
MTHFR A1298C	rs1801131	Π	-/-
MTR A2756G	rs1805087	AA	-/-
MTRR A66G	rs1801394	AG	+/-
MTRR H595Y	rs10380	cc	-/-
MTRR K350A	rs162036	AA	-/-
MTRR R415T	rs2287780	СТ	+/-
MTRR A664A	rs1802059	GG	-/-
BHMT-02	rs567754	Π	+/+
BHMT-04	rs617219	AC	+/-
BHMT-08	rs651852	СТ	+/-
AHCY-01	rs819147	Π	-/-
AHCY-02	rs819134	AA	-/-
AHCY-19	rs819171	Π	-/-
CBS C699T	rs234706	GG	-/-
CBS A360A	rs1801181	AG	+/-
CBS N212N	rs2298758	GG	-/-
SHMT1 C1420T	rs1979277	GG	-/-

In this case diet was the primary issue, but genetics were also likely playing a role. She was homozygous for C677T, as you can see, and then heterozygous for many other SNPs that can affect methylation such as COMT, BHMT, and MTRR.

0091 Organix® Comprehensive Profile - Urine

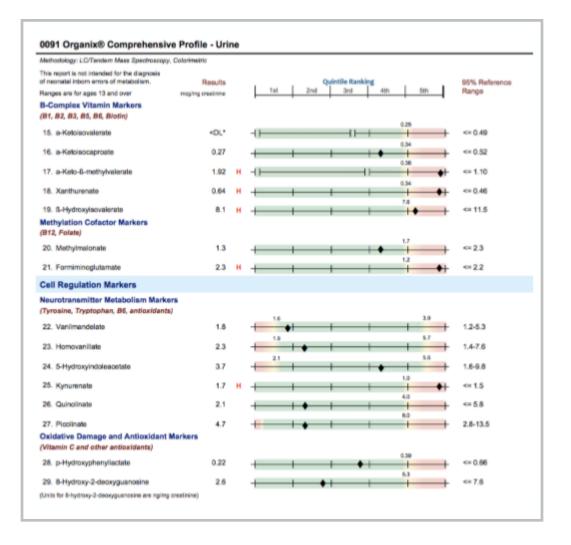
Aethodology: LC/Tandem Mass Spectroscopy, Colorimetri	e			
	Results		Quintile Ranking	95% Reference Range
tanges are for ages 13 and over moging o	reatinine		191 200 310 401 301	Range
B-Complex Vitamin Markers B1, B2, B3, B5, B6, Blotin)			0.25	
15. a-Ketoisovalerate	<dl*< td=""><td></td><td></td><td><= 0.49</td></dl*<>			<= 0.49
16. a-Ketoisocaproate	0.35	н	0.38	<= 0.52
17. a-Keto-8-methylvalerate	0.66	н	-(<= 1.10
18. Xanthurenate	0.18			<= 0.46
19. B-Hydroxyisovalerate	13.3	н	+ + + + + + + + + + + + + + + + + + + +	<= 11.5
lethylation Cofactor Markers B12, Folate)				
20. Methylmalonate	0.6			<= 2.3
21. Formiminoglutamate	2.7	н	+ + + + + +	<= 2.2
Cell Regulation Markers				
ieurotransmitter Metabolism Markers Tyrosine, Tryptophan, B6, antioxidants)			1.6 3.9	
22. Vanilmandelate	2.2		1.6 3.9	1.2-5.3
23. Homovanillate	1.6	L	2.1 5.6	1.4-7.6
24. 5-Hydroxyindoleacetate	2.7			1.6-9.8
25. Kynurenate	0.7			<= 1.5
26. Quinolinate	1.9			<= 5.8
	3.7		+ + + + + + + + + + + + + + + + + + + +	2.8-13.5
27. Picolinate				
27. Picolinate Dxidative Damage and Antioxidant Markers Vitamin C and other antioxidants)				
Dxidative Damage and Antioxidant Markers	0.04		0.39 6.3	<= 0.66

Her FIGLU was quite high here, it's 2.7, and the upper end of the range is 2.2. So she is not only B12 deficient but also folate deficient. The vegan diet was contributing to both folate deficiency and B12 deficiency, and that was accentuated by her homozygosity for MTHFR C667T.

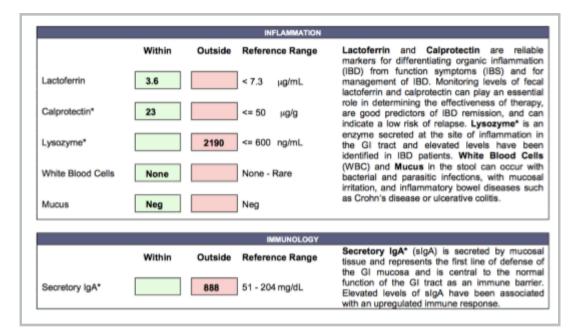
The next patient is a 25-year-old female with chief complaint of digestive problems, brain fog, and food intolerances.

Marker	Value	Functional Range	Lab Range
Glucose	92	75 - 90	65 - 99
Hemoglobin A1c	5.1	4.4 - 5.4	4.8 - 5.6
Uric Acid	4.9	3.2 - 5.5	2.5 - 7.1
BUN	11	13 - 18	6 - 20
Creatinine	0.92	0.85 - 1.1	0.57 - 1
Sodium	138	135 - 140	134 - 144
Potassium	4.4	4.0 - 4.5	3.5 - 5.2
Chloride	102	100 - 106	97 - 108
C02	22	25 - 30	18 - 29
Calcium	9.7	9.2 - 10.1	8.7 - 10.2
Phosphorus	3.8	3.5 - 4.0	2.5 - 4.5
Magnesium	2.2	2.0 - 2.6	1.6 - 2.6
Protein, total	6.9	6.9 - 7.4	6.0 - 8.5
Albumin	4.5	4.0 - 5.0	3.5 - 5.5
Globulin	2.4	2.4 - 2.8	1.5 - 4.5
A/G ratio	1.9	1.5 - 2.0	1.1 - 2.5
Bilirubin, total	0.7	0.1 - 1.2	0.0 - 1.2
Alkaline Phosphatase	46	42 - 107	39 - 117
LDH	109	140 - 180	119 - 226
AST	15	10 - 30	0 - 40
ALT	9	10 - 22	0 - 32
GGT	14	0 - 28	0 - 60
TIBC	330	250 - 350	250 - 450
UIBC	141	150 - 375	150 - 375
Iron	189	85 - 135	35 - 155
Iron saturation	57	15 - 45	15 - 55
Ferritin	91	15 - 120	15 - 150
Cholesterol, total	212	150 - 250	100 - 189
Triglycerides	76	50 - 100	0 - 149
HDL	87	55 - 85	> 39
LDL	110	0 – 175	0 - 119
T. Chol / HDL Ratio	2.4	< 3	0 - 4.4
Triglycerides / HDL Ratio	0.87	< 2	< 3.8
TSH	2.330	0.5 - 2.5	0.45 - 4.50
T4, total	9.2	6.0 - 12	4.5 - 12.0
T3 Uptake	31	28 - 35	24 - 39
T3, Total	102	100 - 180	71 - 180
Vitamin D, 25-hydroxy	34.2	35 - 60	30.0 - 100.0

Marker	Value	Functional Range	Lab Range
WBC	5.2	5.0 - 8.0	3.4 - 10.8
RBC	4.43	4.4 - 4.9	3.77 - 5.28
Hemoglobin	13.8	13.5 - 14.5	11.1 - 15.9
Hematocrit	41.7	37 - 44	34.0 - 46.6
MCV	94	85 - 92	79 - 97
MCH	31.2	27.7 - 32.0	26.6 - 33.0
MCHC	33.1	32 - 35	31.5 - 35.7
RDW	12.3	11.5 - 15.0	12.3 - 15.4
Platelets	215	150 - 415	150 - 379
Neutrophils	50	40 - 60	
Lymphocytes	41	25 - 40	
Monocytes	7	4.0 - 7.0	
Eosinophils	1	0.0 - 3.0	
Basophils	1	0.0 - 3.0	
Additional Tests:			
CRP-hs	1	< 1.0	0.00 - 3.00
Homocysteine	10.8	< 9.0	0.0 - 15.0
Vitamin B-12	244	450 - 2000	211 - 946
Copper	133		72 - 166
Zinc	114		56 - 134
Zinc / Copper Ratio	0.86	> 0.85	
Serum Methylmalonic Acid (MMA)	72	0 - 325	0 - 378


Serum B12 was almost out of the lab range at 244. Homocysteine is functionally high at almost 11. Red blood cell indices were normal except for MCV, which is a little bit borderline high at 94. Note that this patient also had iron overload with iron saturation of 57 percent, UIBC of 141, and serum iron of 189.

Gene & Variation	rsID	Alleles	Result
COMT V158M	rs4680	AG	+/-
COMT H62H	rs4633	CT	+/-
COMT P199P	rs769224	GG	4-
VDR Bsm	rs1544410	CT	+/-
VDR Taq	rs731236	AG	+/-
MAO A R297R	rs6323	GT	+/-
ACAT1-02	rs3741049	GG	+
MTHFR C677T	rs1801133	AA	4/4
MTHFR 03 P39P	rs2066470	GG	+
MTHFR A1298C	rs1801131	π	+
MTR A2756G	rs1805087	AA	+
MTRR A66G	rs1801394	AG	+/-
MTRR H595Y	rs10380	CC	-4-
MTRR K350A	rs162036	AA	
MTRR R415T	rs2287780	CT	+/-
MTRR A664A	rs1802059	GG	-4-
BHMT-02	rs567754	π	+/+
BHMT-04	rs617219	AC	+/-
BHMT-08	rs651852	CT	+/-
AHCY-01	rs819147	π	+
AHCY-02	rs819134	AA	+
AHCY-19	rs819171	π	+
CBS C699T	rs234706	GG	+
CBS A360A	rs1801181	AG	+/-
CBS N212N	rs2298758	GG	+
SHMT1 C1420T	rs1979277	GG	+-


At this point, I was suspicious of B12 deficiency given the low serum cobalamin levels and high homocysteine, but we still didn't know about folate because we didn't have serum or red blood cell folate level for her. We did have a genetic panel, and she was homozygous for C677T.

Given that, I suspected folate deficiency as well as B12 deficiency, and this is where the urine organic acids panel can come in handy. Her FIGLU was 2.3, which is elevated, indicating folate deficiency. Interestingly, her urine MMA was normal at 1.3, though it was close to the 1.5 cut-off point suggested, so this again highlights the importance of using different markers.

	Sample	ppm H ₂	ppm CH ₄	Total H2 + CH4	002 %*	300
1	Baseline	6	26	32	OK	
2	20 min	5	25	30	OK	200 /A 0
3	40 min	5	23	28	OK	160
4	60 min	44	40	84	OK	
5	80 min	79	35	114	OK	
6	100 min	85	31	116	OK	
7	120 min	71	30	101	OK	
В	140 min	186	58	244	OK	1 2 3 4 5 6 7 8 9 10
9	160 min				QNS	
10	180 min	137	53	190	OK	a Hydrogena Viethanea Combined Hydrogen & Viethane
Available (N/A						H ₂ and CH ₄ will be highlighted. If the sample is otherwise unusable the entry for CO ₂ will be marke for details if cells are highlighted and blank or highlighted and contain N/A or QNS.
Available (N/A halysis	and the entries fo	r H ₂ and CH	, will be high Combined	lighted. See notes	section	for details if cells are highlighted and blank or highlighted and contain N/A or QNS. 32 H s20ppm
Available (N/A hallysis Gr	and the entries to	r H, and CH	, will be high Combined he lowest	baseline total =	e with	for details if cells are highlighted and blank or highlighted and contain N/A or QNS. 32 H s20ppm in first 120 minutes = 80 H s20ppm
Available (N/A hallysis Gr	and the entries to	r H, and CH	, will be high Combined he lowest	baseline total =	e with	for details if cells are highlighted and blank or highlighted and contain N/A or QNS. 32 H s20ppm
Available (N/A 1819SiS Gre Gre	and the entries fo eatest H ₂ increa atest CH4 increa	r H ₂ and CH (ase over these over the	will be high Combined he lowest the lowest	baseline total = preceding value preceding value	e with	for details if cells are highlighted and blank or highlighted and contain N/A or QNS. 32 H s20ppm in first 120 minutes = 80 H s20ppm
Available (N/A 1819SiS Gr Greatest co	and the entries fo eatest H ₂ increa atest CH ₄ increa mbined H ₂ & C	r H ₂ and CH (ase over these over the	will be high Combined he lowest the lowest	baseline total = preceding value preceding value	e with	for details if cells are highlighted and blank or highlighted and contain N/A or QNS. 32 H s20ppm iin first 120 minutes = 80 H s20ppm hin first 120 minutes = 17 H s12ppm
Avalable (N/A hallysis Gr Greatest or terpretat	and the entries fo eatest H ₂ increa atest CH ₄ increa mbined H ₂ & C	r H, and CH (ase over t ase over t H ₄ increa	will be high Combined he lowest the lowest se over the Increases	ighted. See notes baseline total = preceding value preceding value of hydrogen gree	e with e with ue with ling va	for details if cells are highlighted and blank or highlighted and contain N/A or QNS. 32 H s20ppm iin first 120 minutes = 80 H s20ppm hin first 120 minutes = 17 H s12ppm
Avalatie (N/A nalysis Gr Greatest or Cerpretat	and the entries for eatest H ₂ increa atest CH4 increa mbined H ₂ & C	r H ₂ and CH (ase over t ase over t H ₄ increas lydrogen	will be high Combined he lowest the lowest se over the Increases first	ighted. See notes baseline total = preceding value preceding value preceding value preceding value of hydrogen gre 120 minutes (+/- of methane gre	e with e with ue with ling va sater th sater th	for details if cells are highlighted and blank or highlighted and contain N/A or QAS. 32 H s20ppm in first 120 minutes = 80 H s20ppm hin first 120 minutes = 17 H s12ppm alue within first 120 minutes = 88 H s15ppm

She had significant gut inflammation as well as SIBO, so in this case, it was a combination of genetics and environmental factors. She was homozygous for C677T, but had GI malabsorption as well, and that probably sent her over the edge and was likely also causing poor absorption of whatever B12 she was consuming in the diet.

Applicant	Kresser		
Appoint. date	5/25/16		
Appoint, time	01:45 PM		
Appoint. No.	210561		
	U	Init	Ref. Range
DERIVATES			
S-Adenosylmethionine (RBC)	219 μ	mol/dl	221 - 256
S-Adenosylhomocysteine (RBC)	47.0 μ	mol/dl	38.0 - 49.0
FOLIC ACID DERIVATES			
5-CH3-THF	7.2 n	mol/l	8.4 - 72.6
10-FormyI-THF	1.3 n	mol/l	1.5 - 8.2
5-FormyI-THF	1.10 n	mol/l	1.20 - 11.70
THE	0.53 n	mol/l	0.60 - 6.80
Folic Acid	7.7 n	mol/l	8.9 - 24.6
Folinic Acid (WB)	6.8 n	mol/l	9.0 - 35.5
Active folate (RBC)	311 n	mol/l	400 - 1500
NUCLEOSIDE			
Adenosine	20.3 1	0^-8 M	16.8 - 21.4
AMINOACIDS IN PLASMA			
Glutathione (oxidised)	0.46 μ	mol/L	0.16 - 0.50
Glutathione (reduced)	3.3 µ	mol/L	3.8 - 5.5

Let's briefly discuss follow-up testing for impaired methylation. The panel I use most is called the "Methylation Pathways Panel" from Health Diagnostics and Research Institute, or HDRI. It is the only lab that I'm aware of that tests for the many distinct folate derivatives in the methylation cycle such as 5-MTHF, 10-formyltetrahydrofolate, 5-formyltetrahydrofolate, which is also called folinic acid, tetrahydrofolate, the most reduced form of folate, folic acid, white blood cell folinic acid, and then active folate inside of the red blood cell. It is also the only lab that tests for both oxidized and reduced glutathione, which is important because oxidized glutathione is not beneficial. It's been oxidized and can no longer perform its beneficial function. The ratio of oxidized to reduced glutathione is an important indicator of oxidative stress and methylation capacity.

HDRI tests also the levels of the major methyl donor, SAMe, S-adenosylmethionine, as well as levels of S-adenosylhomocysteine, which is an inhibitor of methylation. It tests for adenosine. If adenosine is elevated, it suggests a problem with the enzyme deaminase, which breaks down adenosine, and B6 and zinc are cofactors for that enzyme.

Not surprisingly, given this particular patient's B12 and folate deficiency, which we saw on the previous slides, there are several markers that are off on her HDRI panel. I'm not going to go into detail here on how to interpret this panel and treat based on it, but I will cover this in a future course.

The next patient is a 65-year-old female with chronic insomnia and chronic hamstring injuries from running.

Marker	Value	Functional Range	Lab Range
Glucose	95	75 – 90	65 - 99
Hemoglobin A1c	6.0	4.4 - 5.4	4.8 - 5.6
Uric Acid	5.8	3.2 - 5.5	2.5 - 7.1
BUN	23	13 – 18	8 - 27
Creatinine	1.01	0.85 - 1.1	0.57 - 1
BUN/Creatinine Ratio	23	9 - 23	9 - 23
Sodium	141	135 - 140	134 - 144
Potassium	4.4	4.0 - 4.5	3.5 - 5.2
Chloride	100	100 - 106	97 - 108
C02	25	25 - 30	18 - 29
Calcium	9.5	9.2 - 10.1	8.7 - 10.3
Phosphorus	4.0	3.5 - 4.0	2.5 - 4.5
Magnesium	2.0	2.0 - 2.6	1.6 - 2.6
Protein, total	6.9	6.9 - 7.4	6.0 - 8.5
Albumin	4.3	4.0 - 5.0	3.6 - 4.8
Globulin	2.6	2.4 - 2.8	1.5 - 4.5
A/G ratio	1.7	1.5 - 2.0	1.1 - 2.5
Bilirubin, total	0.8	0.1 - 1.2	0.0 - 1.2
Alkaline Phosphatase	48	42 - 107	39 - 117
LDH	182	140 - 180	119 - 226
AST	29	10 - 30	0 - 40
ALT	19	10 - 22	0 - 32
GGT	43	0 - 28	0 - 60
TIBC	339	250 - 350	250 - 450
UIBC	191	150 - 375	150 - 375
Iron	148	85 - 135	35 - 155
Iron saturation	44	15 - 45	15 - 55
Ferritin	44	MW: 30 - 150	15 - 150
Cholesterol, total	217	150 - 250	100 - 199
Triglycerides	59	50 - 100	0 - 149
HDL	105	55 - 85	> 39
LDL	100	0 - 175	0 - 99
T. Chol / HDL Ratio	2.1	< 3	0 - 4.4
Triglycerides / HDL Ratio	0.56	< 2	< 3.8
TSH	3.000	0.5 - 2.5	0.450 - 4.500
T4, total	4.7	6.0 - 12	4.5 - 12.0
T3 Uptake	41	28 - 35	24 - 39
T3, Total	68	100 - 180	71 - 180
Vitamin D, 25-hydroxy	30.5	35 - 60	30.0 - 100.0

Marker	Value	Functional Range	Lab Range
WBC	4.2	5.0 - 8.0	3.4 - 10.8
RBC	4.60	4.4 - 4.9	3.77 - 5.28
Hemoglobin	13.7	13.5 - 14.5	11.1 - 15.9
Hematocrit	41.1	37 - 44	34.0 - 46.6
MCV	89	85 - 92	79 - 97
MCH	29.8	27.7 - 32.0	26.6 - 33.0
MCHC	33.3	32 - 35	31.5 - 35.7
RDW	14.0	11.5 - 15.0	12.3 - 15.4
Platelets	180	150 - 415	150 - 379
Neutrophils	49	40 - 60	
Lymphocytes	40	25 - 40	
Monocytes	7	4.0 - 7.0	
Eosinophils	3	0.0 - 3.0	
Basophils	1	0.0 - 3.0	
Additional Tests:			
CRP-hs	0.83	< 1.0	0.00 - 3.00
Homocysteine	17.8	< 7.0	0.0 - 15.0
Vitamin B-12	363	450 - 2000	211 - 946
Copper	97		72 - 166
Zinc	100		56 - 134
Zinc / Copper Ratio	1.03	> 0.85	
Serum Methylmalonic Acid (MMA)	359	0 - 325	0 - 378
eGFR If NonAfrican Am	59		> 59

Her serum B12 is 363, which is below the 406 cut-off defined for optimal function. Serum MMA is 359, above the 300 cut-off. Homocysteine is 17.8, which is above the lab range.

In terms of underlying causes, she had SIBO, fungal overgrowth, dysbiosis, and Cryptosporidium. In her case, it was likely GI malabsorption was leading to low B12 levels. Also, she had low levels of vitamin D, glutathione, and iodine in other testing.

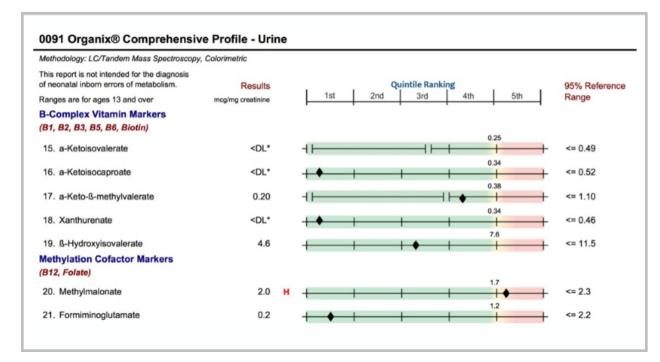
Gene & Variation	rsID	Alleles	Result
COMT V158M	rs4680	AA	+/+
COMT H62H	rs4633	π	+/+
COMT P199P	rs769224	GG	-/-
VDR Bsm	rs1544410	CC	-/-
VDR Taq	rs731236	AA	+/+
MAO-A R297R	rs6323	GG	-/-
ACAT1-02	rs3741049	GG	-/-
MTHFR C677T	rs1801133	GG	-/-
MTHFR 03 P39P	rs2066470	GG	-/-
MTHFR A1298C	rs1801131	π	-/-
MTR A2756G	rs1805087	AA	-/-
MTRR A66G	rs1801394	AA	-/-
MTRR H595Y	rs10380	_	no call
MTRR K350A	rs162036	AA	-/-
MTRR R415T	rs2287780	_	no call
MTRR A664A	rs1802059	AG	+/-
BHMT-02	rs567754	CC	-/-
BHMT-04	rs617219	_	no call
BHMT-08	rs651852	СТ	+/-
AHCY-01	rs819147	π	-/-
AHCY-02	rs819134	_	no call
AHCY-19	rs819171	π	-/-
CBS C699T	rs234706	AA	+/+
CBS A360A	rs1801181	GG	-/-
CBS N212N	rs2298758	_	no call
SHMT1 C1420T	rs1979277		no call

She didn't have any MTHFR mutations, but did have mutations in COMT and MAO. These would not necessarily be expected to affect folate metabolism. They have more of an effect on catecholamine recycling, tyramine breakdown, and serotonin levels.

	Unit	Ref. Range
MISCELLANEOUS		
NO (Nitric oxide)	51.6 ng/m	L 18.0 - 35.0
ENZYMES		
Catalase	128.0 U/m/	mgHb 130.0 - 188.0
DERIVATES		
S-Adenosylmethionine (RBC)	219 μmol	/dl 221 - 256
S-Adenosylhomocysteine (RBC)	56.3 μmol	/dl 38.0 - 49.0
FOLIC ACID DERIVATES		
5-CH3-THF	7.9 nmol	/ 8.4 - 72.6
10-Formyl-THF	6.4 nmol	/1 1.5 - 8.2
5-FormyI-THF	1.10 nmol	/l 1.20 - 11.70
THF	0.47 nmol	/I 0.60 - 6.80
Folic Acid	10.2 nmol	/1 8.9 - 24.6
Folinic Acid (WB)	7.0 nmol	/1 9.0 - 35.5
Active folate (RBC)	327 nmo	/l 400 - 1500
NUCLEOSIDE		
Adenosine	25.7 10^-	8 M 16.8 - 21.4
AMINOACIDS IN PLASMA		
Nitrotyrosine	10.9 µg/l	1.1 - 6.8
Glutathione (oxidised)	0.54 µmol	/L 0.16 - 0.50
Glutathione (reduced)	2.8 µmo	/L 3.8 - 5.5

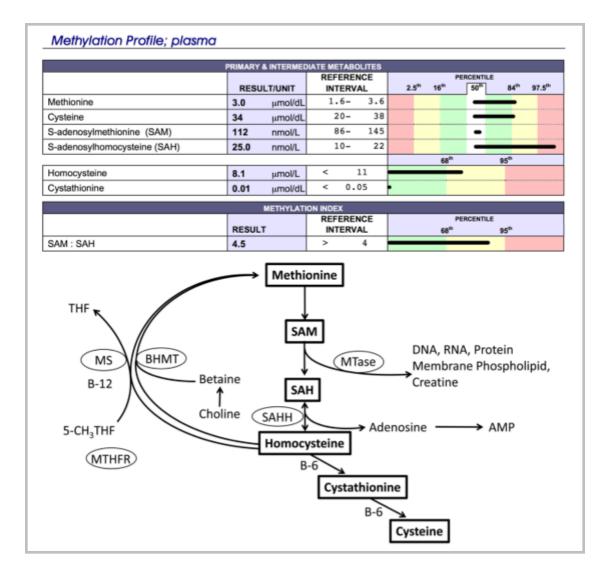
However, her HDRI panel suggested very significant issues with methylation. All but two markers were out of range, as you can see here. Even folic acid was at the very low end of the range. This is a good example of how genetics don't always predict or reflect what is happening functionally, and it is why I insist on assessing functional methylation status instead of just treating people based on their genetics. You'll see this a lot, both patients who are self-treating based on their genes, and clinicians who are treating with supplement protocols on the basis of genetics alone, and I really don't think this is a good idea. There is still too much we don't understand about the genes, and as I've said numerous times and hopefully have shown here, environment is much more important. This is an expanded panel from HDRI, which also includes nitrotyrosine, catalase, and nitric oxide, which are all markers of oxidative stress.

The next patient is a 36-year-old female with PMS, anxiety, nausea, dizziness, irritability, and low blood pressure. She only weighed about 100 pounds. She had gastritis, which should be a clue for B12 deficiency, and was hypothyroid since about 20 years old. She was diagnosed with Hashimoto's in 2013 with a TSH of over 1,000 and was diagnosed with SIBO in 2014, so again, you should be thinking about potential absorption issues.


Marker	Value	Functional Range	Lab Range
Glucose	79	75 – 90	65 - 99
Hemoglobin A1c	5.3	4.4 - 5.4	4.8 - 5.6
Uric Acid	3.1	3.2 - 5.5	2.5 - 7.1
BUN	20	13 – 18	6 - 20
Creatinine	0.80	0.85 - 1.1	0.57 - 1
Sodium	140	135 - 140	134 - 144
Potassium	4.5	4.0 - 4.5	3.5 - 5.2
Chloride	101	100 - 106	97 - 108
C02	26	25 - 30	18 - 29
Calcium	9.4	9.2 - 10.1	8.7 - 10.2
Phosphorus	3.7	3.5 - 4.0	2.5 - 4.5
Magnesium	2.0	2.0 - 2.6	1.6 - 2.6
Protein, total	6.7	6.9 - 7.4	6.0 - 8.5
Albumin	4.9	4.0 - 5.0	3.5 - 5.5
Globulin	1.8	2.4 - 2.8	1.5 - 4.5
A/G ratio	2.7	1.5 - 2.0	1.1 - 2.5
Bilirubin, total	0.7	0.1 - 1.2	0.0 - 1.2
Alkaline Phosphatase	51	42 - 107	39 - 117
LDH	126	140 - 180	119 - 226
AST	16	10 - 30	0 - 40
ALT	11	10 - 22	0 - 32
GGT	12	0 - 28	0 - 60
TIBC	277	250 - 350	250 - 450
UIBC	157	150 - 375	150 - 375
Iron	120	85 - 135	35 - 155
Iron saturation	43	15 - 45	15 - 55
Ferritin	109	15 - 120	15 - 150
Cholesterol, total	165	150 - 250	100 - 199
Triglycerides	56	50 - 100	0 - 149
HDL	59	55 - 85	> 39
LDL	95	0 - 175	0 - 99
T. Chol / HDL Ratio	2.8	< 3	0 - 4.4
Triglycerides / HDL Ratio	0.95	< 2	< 3.8
TSH	2.440	0.5 - 2.5	0.45 - 4.50
T4, total	7.0	6.0 - 12	4.5 - 12.0
T3 Uptake	28	28 - 35	24 - 39
T3, Total	71	100 - 180	71 - 180
Vitamin D, 25-hydroxy	25.1	35 - 60	30.0 - 100.0

Marker	Value	Functional Range	Lab Range
WBC	3.2	5.0 - 8.0	3.4 - 10.8
RBC	4.40	4.4 - 4.9	3.77 - 5.28
Hemoglobin	13.6	13.5 - 14.5	11.1 - 15.9
Hematocrit	40.4	37 - 44	34.0 - 46.6
MCV	92	85 - 92	79 - 97
MCH	30.9	27.7 - 32.0	26.6 - 33.0
MCHC	33.7	32 - 35	31.5 - 35.7
RDW	13.0	11.5 - 15.0	12.3 - 15.4
Platelets	235	150 - 415	150 - 379
Neutrophils	54	40 - 60	
Lymphocytes	36	25 - 40	
Monocytes	6	4.0 - 7.0	
Eosinophils	2	0.0 - 3.0	
Basophils	2	0.0 - 3.0	
Additional Tests:			
T3, Free	2.4	2.5 - 4.0	2 - 4.4
T4, Free	1.2	1 - 1.5	0.82 - 1.77
Thyroid – TPO Ab	19		0 - 34
Thyroid – TGA	<1.0		0 - 0.9
CRP-hs	0.2	< 1.0	0.00 - 3.00
Homocysteine	9.4	< 9.0	0.0 - 15.0
Vitamin B-12	391	450 - 2000	211 - 946
Copper	71		72 - 166
Zinc	84		56 - 134
Zinc / Copper Ratio	1.18	> 0.85	
Serum Methylmalonic Acid (MMA)	186	0 - 325	0 - 378

Serum B12 is 391, below the 406 cut-off. Homocysteine was 9.4, slightly above the 7.0 cut-off. Serum MMA is completely normal. Note that copper and vitamin D are also low, which suggests malabsorption of nutrients.


Her urine MMA is well above the 1.5 cut-off. She did not have SIBO when I tested her, but had significant insufficiency dysbiosis, which was likely a cause of malabsorption. Note that in many cases discussed so far these are patients on a nutrient-dense Paleo diet. It goes to show that B12 deficiency can—and does—occur in omnivorous patients, just less frequently than it does in vegetarians and in particular vegans.

Gene & Variation	rsID	Alleles	Result	
COMT V158M	rs4680	AG	+/-	
COMT H62H	rs4633	СТ	+/-	
COMT P199P	rs769224	GG	-/-	
VDR Bsm	rs1544410	СТ	+/-	
VDR Taq	rs731236	AG	+/-	
MAO-A R297R	rs6323	π	+/+	
ACAT1-02	rs3741049	GG	-/-	
MTHFR C677T	rs1801133	AG	+/-	
MTHFR 03 P39P	rs2066470	GG	-/-	
MTHFR A1298C	rs1801131	π	-/-	
MTR A2756G	rs1805087	AG	+/-	
MTRR A66G	rs1801394	AG	+/-	
MTRR H595Y	rs10380	_	no call	
MTRR K350A	rs162036	AA	-/-	
MTRR R415T	rs2287780	_	no call	
MTRR A664A	rs1802059	GG	-/-	
BHMT-02	rs567754	rs567754 CT		
BHMT-04	rs617219	_	no call	
BHMT-08	rs651852	СТ	+/-	
AHCY-01	rs819147	СТ	+/-	
AHCY-02	rs819134	_	no call	
AHCY-19	rs819171	СТ	+/-	
CBS C699T	rs234706	AG	+/-	
CBS A360A	rs1801181	AG	+/-	
CBS N212N	rs2298758	rs2298758		
SHMT1 C1420T	rs1979277		no call	

In this case she was heterozygous for C677T. About 30 percent of the population is heterozygous, and it's only a 33 percent reduction of enzyme activity, typically not enough on its own to cause pathology without influence of environmental factors. But notice that she also has heterozygous mutations in numerous other genes involved in the methylation cycle and, collectively, these are probably playing a role.

Doctor's Data also has a methylation profile you can use as a follow-up test. It is not as complete as the HDRI panel. It only tests methionine, cysteine, S-adenosylmethionine, Sadenosylhomocysteine, homocysteine—which you already have on the case review blood panel cystathionine, and SAMe-to-SAH ratio. No folate derivatives, or oxidized glutathione to reduced glutathione ratio, or other markers of oxidative stress such as the HDRI panel has.

However, there are a few advantages to this Doctor's Data panel. One is that some patients can get insurance coverage, where that doesn't happen with HDRI. Two is that HDRI is probably the slowest lab I've ever worked with. Sometimes the results take more than eight weeks to get back, which is a huge hassle if you're on a treatment plan with a patient. Doctor's Data typically comes back in a week or two, so you can get a much quicker idea of how the treatment is working and what to do next.

This patient with this particular panel had high S-adenosylhomocysteine and normal SAMe, which lead to a high SAH-to-SAMe ratio, and it was inhibiting methylation.