

Thyroid Hypofunction I - Part Four

The next patient is a 40-year-old female with chief complaint of chronic inflammation, leaky gut, food sensitivities, and skin conditions.

Marker	Value	Functional Range	Lab Range
Glucose	86	75 - 90	65 - 99
Hemoglobin A1c	5.3	4.4 - 5.4	4.8 - 5.6
Uric Acid	4.5	3.2 - 5.5	2.5 - 7.1
BUN	10	13 – 18	6 - 20
Creatinine	0.88	0.85 - 1.1	0.57 - 1
Sodium	137	135 – 140	134 - 144
Potassium	4.1	4.0 - 4.5	3.5 - 5.2
Chloride	98	100 - 106	97 - 108
C02	25	25 - 30	18 - 29
Calcium	9.3	9.2 - 10.1	8.7 - 10.2
Phosphorus	3.3	3.5 - 4.0	2.5 - 4.5
Magnesium	2.0	2.0 - 2.6	1.6 - 2.6
Protein, total	6.9	6.9 - 7.4	6.0 - 8.5
Albumin	4.5	4.0 - 5.0	3.5 - 5.5
Globulin	2.4	2.4 - 2.8	1.5 - 4.5
A/G ratio	1.9	1.5 - 2.0	1.1 - 2.5
Bilirubin, total	1.0	0.1 - 1.2	0.0 - 1.2
Alkaline Phosphatase	65	42 - 107	39 - 117
LDH	149	140 - 180	119 - 226
AST	19	10 - 30	0 - 40
ALT	20	10 - 22	0 - 32
GGT	13	0 - 28	0 - 60
TIBC	296	250 - 350	250 - 450
UIBC	123	150 - 375	150 - 375
Iron	173	85 - 135	35 - 155
Iron saturation	58	15 - 45	15 - 55
Ferritin	33	15 - 120	15 - 150
Cholesterol, total	160	150 - 250	100 - 199
Triglycerides	67	50 - 100	0 - 149
HDL	68	55 - 85	> 39
LDL	79	0 - 175	0 - 99
T. Chol / HDL Ratio	2.4	< 3	0 - 4.4
Triglycerides / HDL Ratio	0.99	<2	< 3.8
TSH	23.770	0.5 - 2.5	0.45 - 4.50
T4, total	8.9	6.0 - 12	4.5 - 12.0
T3 Uptake	30	28 - 35	24 - 39
T3, Total	77	100 - 180	71 - 180
Vitamin D, 25-hydroxy	28.6	35 - 60	30.0 - 100.0

Marker	Value	Functional Range	Lab Range
WBC	4.5	5.0 - 8.0	3.4 - 10.8
RBC	4.57	4.4 - 4.9	3.77 - 5.28
Hemoglobin	13.8	13.5 - 14.5	11.1 - 15.9
Hematocrit	40.7	37 - 44	34.0 - 46.6
MCV	89	85 - 92	79 - 97
MCH	30.2	27.7 - 32.0	26.6 - 33.0
MCHC	33.9	32 - 35	31.5 - 35.7
RDW	12.8	11.5 - 15.0	12.3 - 15.4
Platelets	203	150 - 415	150 - 379
Neutrophils	50	40 - 60	
Lymphocytes	40	25 - 40	
Monocytes	9	4.0 - 7.0	
Eosinophils	1	0.0 - 3.0	
Basophils	0	0.0 - 3.0	
Additional Tests:			
T3, Free	2.3	2.5 - 4.0	2 - 4.4
T4, Free	1.28	1 - 1.5	0.82 - 1.77
CRP-hs	0.5	< 1.0	0.00 - 3.00
Homocysteine	7.4	< 9.0	0.0 - 15.0
Vitamin B-12	688	450 - 2000	211 - 946
Copper	110		72 - 166
Zinc	116		56 - 134
Zinc / Copper Ratio	1.05	> 0.85	
Serum Methylmalonic Acid (MMA)	167	0 - 325	0 - 378

As you can see, her TSH is almost 24, but her T4, both total and free, and T3, both total and free, are within normal lab limits. Her total T3 and free T3 are low in the functional range, however. Again, this is technically subclinical hypothyroidism.

Up to 80 percent of patients who are hypothyroid have normal T4 and T3 in the reference range at least, so this could be an argument for tightening the T4 and T3 reference range. TSH is considered the most sensitive marker of thyroid function, which is why some clinicians, especially in the conventional model, only use TSH for diagnosis and treatment.

Note that this patient's iron levels are also high. Both iron deficiency and overload can adversely affect the HPA axis and contribute to autoimmune thyroid disease and hypothyroidism.

Finally, this case illustrates another common finding, especially in Hashimoto's patients, which is low T4-to-T3 conversion, so she has normal T4 levels and normal free T4 levels, but her total T3 and free T3 are borderline low.

I wrote an entire series on low T3 syndrome, and I'll link to the articles in the resource section, and I would again suggest that you read it for this unit. I'm just going to give you a quick overview here.

The thyroid gland produces thyroxine and triiodothyronine, T4 and T3, which are the primary circulating hormones. The thyroid produces T4 in significantly greater quantities to T3. It's a ratio of 17:1. T3 is approximately five times more biologically active than T4. T4 is converted into the more active T3 by the deiodinase system: D1, D2, and D3 in multiple tissues and organs, but especially in the liver, gut, skeletal muscle, brain, and the thyroid gland itself. The deiodinase D3 converts T3 into an inactive form of thyroid hormone called reverse T3 in the liver. One of the primary causes of low T4-to-T3 conversion is inflammation. For example, interleukin-6 levels are positively correlated with reverse T3, which is the inactive form of T3, and inversely correlated with free T3. Hashimoto's is an inflammatory condition, which is why many patients with Hashimoto's don't convert T4 to T3 well and why monotherapy with levothyroxine is often not effective.

Reverse T3: not a marker of thyroid function

Reverse T3 is another marker on the full thyroid panel. Again, it's the inactive form of T3. In emotional, psychological, or physiological stress, the body will convert excess T4 to reverse T3 as a means of conserving energy for healing and repair. From this perspective, replacing thyroid hormone in these cases may not be beneficial and may even be harmful. On the other hand, in those suffering from long-term chronic illness, high reverse T3 or high reverse T3-to-free T3 ratio may be more reflective of pathology than adaptation, and that group may benefit from T3 supplementation.

The studies on this are mixed. Some show harm. Others show no change, and others show a benefit. The T3 replacement has been shown to be consistently beneficial only in cardiac patients who have recently had surgery, heart failure, or transplant.

TSH TSH	0.017	Low	uIU/mL	0.450 - 4.500	02
DHEA-Sulfate, Serum DHEA-Sulfate, LCMS Reference Range: Adult Females (41 - 50y)	99 : <229		ug/dL		01
Thyroxine (T4) Free, Direct, S T4,Free(Direct)	1.84	High	ng/dL	0.82 - 1.77	02
Reverse T3, Serum	32.2	High	ng/dL	9.2 - 24.1	03
EBV Ab VCA, IgG	183.0	High	U/mL Negativ Equivod Positiv	al 18.0 - 21.9	02
Vitamin B12	664		pg/mL	211 - 946	02
Ferritin, Serum	45		ng/mL	15 - 150	02
Triiodothyronine, Free, Serum	4.0		pg/mL	2.0 - 4.4	02

This patient is a 39-year-old female. She has Hashimoto's. She also has reactivated Epstein-Barr and several significant markers of inflammation. She was taking a high dose of levothyroxine, which is common in these patients. They don't convert T4 to T3 well because of inflammation, so the doctor just prescribes higher and higher doses of levothyroxine, and this can lead to facetious hyperthyroidism. Her TSH is effectively zero, and she has high free T4. However, note that her reverse T3 is high, which is indicative of inflammation. Even when free T3 is normal or high-normal, as it was for her, the ratio of reverse T3 to free T3 will still be elevated.

What do I mean by elevated? Well, there is no published research on this that I'm aware of. Many advocacy groups and clinicians have come up with a threshold based on clinical and anecdotal experience. If you're using free T3, the suggested cutoff is above 20 for optimal ratio, and if you're using total T3, you'd want it to be above 10 for an optimal ratio. In this case, using free T3, the ratio is 8, which is well below the threshold of 20.

I personally don't put a lot of stock in these ratios. I just use them loosely as indicators of psychological, emotional, or physiological stress, in other words, allostatic load. Remember, a depressed reversed T3-to-free T3 ratio doesn't indicate thyroid dysfunction, per se, and doesn't always or even typically signal a need for thyroid hormone replacement. Even with this high dose of T4, her TSH is almost zero, and she has a high, high-normal free T4 and free T3, and the patient was still symptomatic. This is a great example of why the underlying condition needs to be addressed, and T4 monotherapy as the only treatment for Hashimoto's is woefully inadequate.

Some clinicians and patient thyroid advocates have argued that when the ratio of RT3, or reverse T3, to free T3 is high, even when RT3 is high-normal or normal and T3 is normal or low-normal, the patient should be treated with T3 replacement, especially when the patient has symptoms consistent with hypothyroidism such as cold hands and feet, GI issues, and fatigue.

4 days 1 6	- 30 - 11 - 5 - 10 - 19 >19	days days months years years years years FLAG 9		.83 - 3.09 .48 - 2.34 .85 - 1.75 .90 - 1.67 .93 - 1.60 .82 - 1.77	.48 - 2.34 .85 - 1.75 .90 - 1.67 .93 - 1.60	LAB 01
4 days 1 6 11	- 30 - 11 - 5 - 10 - 19 >19	days months years years years years		.83 - 3.09 .48 - 2.34 .85 - 1.75 .90 - 1.67 .93 - 1.60 .82 - 1.77	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7.89
4 days 1 6	- 30 - 11 - 5 - 10 - 19	days months years years years		.83 - 3.09 .48 - 2.34 .85 - 1.75 .90 - 1.67 .93 - 1.60	.83 - 3.09 .48 - 2.34 .85 - 1.75 .90 - 1.67 .93 - 1.60	
4 days 1 6	- 30 - 11 - 5 - 10 - 19	days months years years years		.83 - 3.09 .48 - 2.34 .85 - 1.75 .90 - 1.67 .93 - 1.60	.83 - 3.09 .48 - 2.34 .85 - 1.75 .90 - 1.67 .93 - 1.60	
4 days 1 6	- 30 - 11 - 5 - 10	days months years years		.83 - 3.09 .48 - 2.34 .85 - 1.75 .90 - 1.67	.83 - 3.09 .48 - 2.34 .85 - 1.75 .90 - 1.67	
4 days 1	- 30 - 11 - 5	days months years		.83 - 3.09 .48 - 2.34 .85 - 1.75	.83 - 3.09 .48 - 2.34 .85 - 1.75	
4 days	- 30 - 11	days months		.83 - 3.09 .48 - 2.34	.83 - 3.09 .48 - 2.34	
4	- 30	days		.83 - 3.09	.83 - 3.09	
		-				
0	- 3	davre		66 - 2 71	66 - 2 71	
		pacient	age			
			300		or provided	U1
		-			2.0 - 4.4	01
TT						
		-				
-						
		-				
		-				
		patient	age			
m						01
	1.67				0.450 - 4.500	01
	4 days 1 6 11	Im 3. No Age 0 - 3 4 - 30 days - 11 1 - 5 6 - 10 11 - 19 >19 1.4 No Age	$\begin{array}{rrrr} & 3.1 \\ & \text{No patient} \\ & \text{Age} \\ 0 & - & 3 & \text{days} \\ 4 & - & 30 & \text{days} \\ & \text{days} & - & 11 & \text{months} \\ & 1 & - & 5 & \text{years} \\ & 6 & - & 10 & \text{years} \\ & 11 & - & 19 & \text{years} \\ & 11 & - & 19 & \text{years} \\ & 1.41 & \text{No patient} \\ & \text{Age} \end{array}$	$\begin{array}{rrrr} & 3.1 \\ & \text{No patient age} \\ & \text{Age} \\ 0 & - & 3 & \text{days} \\ 4 & - & 30 & \text{days} \\ & \text{days} & - & 11 & \text{months} \\ & 1 & - & 5 & \text{years} \\ & 6 & - & 10 & \text{years} \\ & 11 & - & 19 & \text{years} \\ & & 19 & \text{years} \\ & & 1.41 \\ & \text{No patient age} \\ & \text{Age} \end{array}$	Im 3.1 pg/mL No patient age and/or gend Age Male 0 - 3 days 2.0 - 7.9 4 - 30 days 2.0 - 5.2 days - 11 months 1.6 - 6.4 1 - 5 years 2.0 - 6.0 6 - 10 years 2.7 - 5.2 11 - 19 years 2.3 - 5.0 >19 years 2.0 - 4.4 1.41 ng/dL No patient age male	Im 3.1 pg/mL No patient age and/or gender provided Age Male Female 0 - 3 days 2.0 - 7.9 2.0 - 7.9 4 - 30 days 2.0 - 5.2 2.0 - 5.2 days - 11 months 1.6 - 6.4 1.6 - 6.4 1 - 5 years 2.0 - 6.0 2.0 - 6.0 6 - 10 years 2.7 - 5.2 2.7 - 5.2 11 - 19 years 2.3 - 5.0 2.3 - 5.0 >19 years 2.0 - 4.4 2.0 - 4.4 1.41 ng/dL No patient age male Male Female

This is referred to as Wilson's syndrome, a condition that does not exist in the scientific literature, but it's popular in some functional and integrative medicine circles. For example, check out the labs on this slide. The TSH is 1.67, so that's normal. Free and total T4 are normal. Free and total T3 are all normal, but if you do the RT3-to-T3 ratio, you get 5.4 for total and 7.2 for free, both of which are low. This would lead to treatment with T3 of a patient with entirely normal TSH and free and total T4 and T3. I don't really agree with this approach. The symptoms are not specific enough to diagnose a thyroid problem in the absence of supportive labs, and as mentioned, there is not

enough data on RT3. The few studies I have seen suggest that RT3 does not distinguish between hypothyroidism and euthyroid sick syndrome or low T3 syndrome.

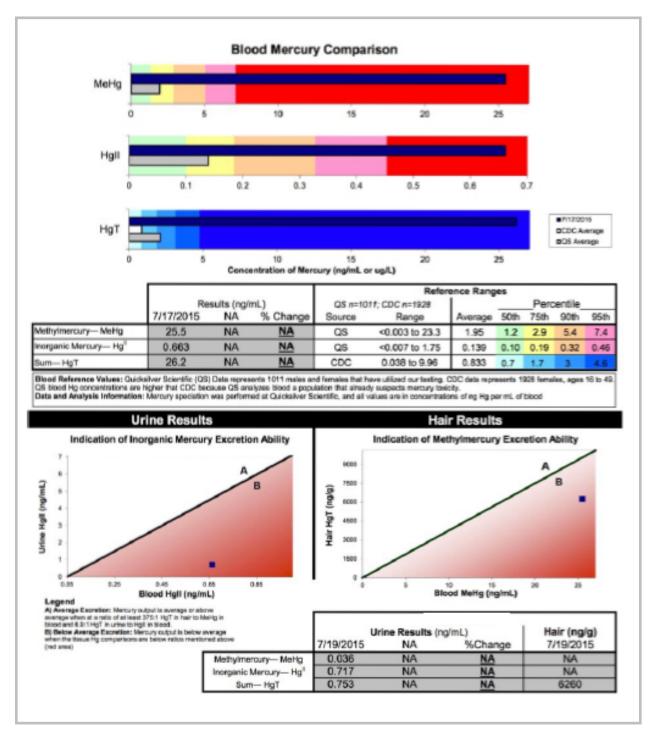
I have heard anecdotal reports of improvement from people who have taken replacement T3 hormone when their RT3-to-T3 ratio is off, even with normal thyroid labs, but I'm concerned about overriding the body's attempt to downregulate thyroid metabolism as a means of energy conservation and repair in these conditions. My approach is when there is low T4-to-T3 conversion, high reverse T3, or a high RT3-to-free T3 or -total T3 ratio, I would look at that as not a sign of a thyroid problem but a sign of inflammation, HPA axis dysfunction, or nutrient imbalance, and I would address those conditions rather than giving thyroid hormone.

Marker	Value	Functional Range	Lab Range
Glucose	97	75 - 90	65 - 99
Hemoglobin A1c	5.7	4.4 - 5.4	4.8 - 5.6
Uric Acid	5.5	3.7 - 6.0	3.7 - 8.6
BUN	12	13 – 18	6 - 24
Creatinine	1.02	0.85 - 1.1	0.76 - 1.27
Sodium	138	135 - 140	134 - 144
Potassium	4.7	4.0 - 4.5	3.5 - 5.2
Chloride	99	100 - 106	97 - 108
C02	23	25 - 30	18 - 29
Calcium	9.4	9.2 - 10.1	8.7 - 10.2
Phosphorus	4.2	3.5 - 4.0	2.5 - 4.5
Magnesium	2.0	2.0 - 2.6	1.6 - 2.6
Protein, total	7.1	6.9 - 7.4	6.0 - 8.5
Albumin	4.8	4.0 - 5.0	3.5 - 5.5
Globulin	2.3	2.4 - 2.8	1.5 - 4.5
A/G ratio	2.1	1.5 - 2.0	1.1 - 2.5
Bilirubin, total	0.4	0.1 - 1.2	0.0 - 1.2
Alkaline Phosphatase	66	42 - 107	39 - 117
LDH	93	140 - 180	121 - 224
AST	28	10 - 30	0 - 40
ALT	17	10 - 29	0 - 44
GGT	22	0 - 40	0 - 65
TIBC	364	250 - 350	250 - 450
UIBC	282	150 - 375	150 - 375
Iron	82	85 - 135	40 - 155
Iron saturation	23	15 – 45	15 - 55
Ferritin	43	30 - 150	30 - 400
Cholesterol, total	245	150 - 240	100 - 199
Triglycerides	66	50 - 100	0 - 149
HDL	108	55 - 85	> 39
LDL	124	0 - 175	0 - 99
T. Chol / HDL Ratio	2.3	< 3	0 - 5.0
Triglycerides / HDL Ratio	0.61	< 2	< 3.8
TSH	3.260	0.5 - 2.5	0.45 - 4.50
T4, total	4.3	6.0 - 12	4.5 - 12
T3 Uptake	29	30 - 38	24 - 39
T3, Total	120	100 – 180	71 - 180
Vitamin D, 25-hydroxy	56.9	35 - 60	30.0 - 100.0

Marker	Value	Functional Range	Lab Range
WBC	5.2	5.0 - 8.0	3.4 - 10.8
RBC	5.34	4.4 - 4.9	4.14 - 5.8
Hemoglobin	16.1	14 - 15	12.6 - 17.7
Hematocrit	48.4	40 - 48	37.5 - 51.0
MCV	91	85 - 92	79 - 97
MCH	30.1	27.7 - 32.0	26.6 - 33.0
MCHC	33.3	32 - 35	31.5 - 35.7
RDW	14.1	11.5 - 15.0	12.3 - 15.4
Platelets	240	150 - 415	150 - 379
Neutrophils	44	40 - 60	
Lymphocytes	38	25 - 40	
Monocytes	14	4.0 - 7.0	
Eosinophils	2	0.0 - 3.0	
Basophils	1	0.0 - 3.0	
Additional Tests:			
CRP-hs	0.43	< 1.0	0.00 - 3.00
Homocysteine	7.4	< 9.0	0.0 - 15.0
Vitamin B-12	849	450 - 2000	211 - 946
Copper	104		72 - 166
Zinc	149		56 - 134
Zinc / Copper Ratio	1.43	> 0.85	
Serum Methylmalonic Acid (MMA)	121	0 - 325	0 - 378

This patient is a 46-year-old male who developed health problems after extensive travel in China and South America, primarily digestive distress but also brain fog, poor memory, and weak immune function. His TSH was within the normal reference range, but T4 is lab low. Interestingly, T3 is normal, even in the functional range. This case illustrates an important point. Sometimes hypothyroidism is the underlying cause of the patient's symptoms, but other times, it is more of a symptom of a deeper problem, and this is especially true with subclinical hypothyroidism. In these cases, it makes more sense, in my opinion, to address the underlying pathology first and then see what happens with thyroid unless they are in really bad shape, and supporting thyroid right away is necessary. This is a functional medicine approach to hypothyroidism. We're always peeling the layers of the onion back to try to get to the underlying cause.

	BACTERIOLOGY CULTURE	
Expected/Beneficial flora	Commensal (Imbalanced) flora	Dysbiotic flora
4+ Bacteroides fragilis group	1+ Staphylococcus aureus	4+ Citrobacter farmeri
2+ Bilfdobacterium spp.		4+ Enterobacter cloacee complex
3+ Escherichia coli		3+ Proteus mirabilis
2+ Lactobacillus spp.		
4+ Enterococcus spp.		
4+ Clostridium spp.		
NG = No Growth		
NG - No Glowen		
	BACTERIA INFORMATION	
evels of beneficial bacteria and increased le hysbiotic bacteria consist of known pathog umber of factors including: consumption of	wels of commensal bacteria. Certain commensal bacte enic bacteria and those that have the potential to cau contaminated water or food, exposure to chemicals th	ria are reported as dysbiotic at higher levels. se disease in the GI tract. They can be present due to
evels of beneficial bacteria and increased le Dysbiotic bacteria consist of known pathog number of factors including: consumption of	veis of commensal bacteria. Certain commensal bacte enic bacteria and those that have the potential to cau contaminated water or food, exposure to chemicals th or fiber intake and high stress levels.	ria are reported as dysbiotic at higher levels. se disease in the GI tract. They can be present due to
evels of beneficial bacteria and increased le Dysbiotic bacteria consist of known pathog number of factors including: consumption of anal contraceptives or other medications; por	vels of commensal bacteria. Certain commensal bacte enic bacteria and those that have the potential to cau contaminated water or food, exposure to chemicals th or fiber intake and high stress levels. YEAST CULTURE	se disease in the GI tract. They can be present due to at are toxic to beneficial bacteria; the use of antibiotic
evels of beneficial bacteria and increased le Dysbiotic bacteria consist of known pathog number of factors including: consumption of	veis of commensal bacteria. Certain commensal bacte enic bacteria and those that have the potential to cau contaminated water or food, exposure to chemicals th or fiber intake and high stress levels.	ria are reported as dysbiotic at higher levels. se disease in the GI tract. They can be present due to rat are toxic to beneficial bacteria; the use of antibiotic
evels of beneficial bacteria and increased le Dysbiotic bacteria consist of known pathog number of factors including: consumption of anal contraceptives or other medications; por	vels of commensal bacteria. Certain commensal bacte enic bacteria and those that have the potential to cau contaminated water or food, exposure to chemicals th or fiber intake and high stress levels. YEAST CULTURE	ria are reported as dysbiotic at higher levels. se disease in the GI tract. They can be present due to rat are toxic to beneficial bacteria; the use of antibiotic
evels of beneficial bacteria and increased le Sysbiolic bacteria consist of known pathog number of factors including: consumption of anal contraceptives or other medications; por Normal flora	vels of commensal bacteria. Certain commensal bacte enic bacteria and those that have the potential to cau contaminated water or food, exposure to chemicals th or fiber intake and high stress levels. YEAST CULTURE	ria are reported as dysbiotic at higher levels. se disease in the GI tract. They can be present due to nat are toxic to beneficial bacteria; the use of antibiotic
evels of beneficial bacteria and increased le Sysbiolic bacteria consist of known pathog number of factors including: consumption of anal contraceptives or other medications; por Normal flora	vels of commensal bacteria. Certain commensal bacte enic bacteria and those that have the potential to cau contaminated water or food, exposure to chemicals th or fiber intake and high stress levels. YEAST CULTURE	ria are reported as dysbiotic at higher levels. se disease in the GI tract. They can be present due to nat are toxic to beneficial bacteria; the use of antibiotic
evels of beneficial bacteria and increased le ysbiodic bacteria consist of known pathog umber of factors including: consumption of ral contraceptives or other medications; por Normal flora	vels of commensal bacteria. Certain commensal bacte enic bacteria and those that have the potential to cau contaminated water or food, exposure to chemicals th or fiber intake and high stress levels. YEAST CULTURE	ria are reported as dysbiotic at higher levels. se disease in the GI tract. They can be present due to nat are toxic to beneficial bacteria; the use of antibiotic
evels of beneficial bacteria and increased le bysbiodic bacteria consist of known pathog number of factors including: consumption of ral contraceptives or other medications; por Normal flora	vels of commensal bacteria. Certain commensal bacte enic bacteria and those that have the potential to cau contaminated water or food, exposure to chemicals th or fiber intake and high stress levels. YEAST CULTURE	ria are reported as dysbiotic at higher levels. se disease in the GI tract. They can be present due to nat are toxic to beneficial bacteria; the use of antibiotic
evels of beneficial bacteria and increased le bysbiodic bacteria consist of known pathog number of factors including: consumption of ral contraceptives or other medications; por Normal flora	vels of commensal bacteria. Certain commensal bacte enic bacteria and those that have the potential to cau contaminated water or food, exposure to chemicals th or fiber intake and high stress levels. YEAST CULTURE	ria are reported as dysbiotic at higher levels. se disease in the GI tract. They can be present due to nat are toxic to beneficial bacteria; the use of antibiotic
evels of beneficial bacteria and increased le Sysbiolic bacteria consist of known pathog number of factors including: consumption of ral contraceptives or other medications; por Normal flora	vels of commensal bacteria. Certain commensal bacte enic bacteria and those that have the potential to cau contaminated water or food, exposure to chemicals th or fiber intake and high stress levels. YEAST CULTURE	ria are reported as dysbiotic at higher levels. se disease in the GI tract. They can be present due to nat are toxic to beneficial bacteria; the use of antibiotic
evels of beneficial bacteria and increased le bysbiodic bacteria consist of known pathog number of factors including: consumption of real contraceptives or other medications; por Normal flora No yeast isolated	veis of commensal bacteria. Certain commensal bacte enic bacteria and those that have the potential to cau (contaminated water or food, exposure to chemicals th or fiber intake and high stress levels. YEAST CULTURE Dyabiet	via are reported as dysbiotic at higher levels. se disease in the GI tract. They can be present due to hat are toxic to beneficial bacteria; the use of antibiotic ic flora
evels of beneficial bacteria and increased le Sysbiolic bacteria consist of known pathog umber of factors including: consumption of cal contraceptives or other medications; por Normal flora No yeast isolated MICROSCOPIC YEAST	veis of commensal bacteria. Certain commensal bacte enic bacteria and those that have the potential to cau contaminated water or food, exposure to chemicals th or fiber intake and high stress levels. YEAST CULTURE Dyabiet	ria are reported as dysbiotic at higher levels. se disease in the GI tract. They can be present due to hat are toxic to beneficial bacteria; the use of antibiotic ic flora
evels of beneficial bacteria and increased le Sysbiolic bacteria consist of known pathog number of factors including: consumption of stal contraceptives or other medications; por Normal flora No yeast isolated MICROSCOPIC YEAST Result: Expected:	vels of commensal bacteria. Certain commensal bacteria and those that have the potential to cau contaminated water or food, exposure to chemicals the or fiber intake and high stress levels. YEAST CULTURE Dyabiet	ria are reported as dysbiotic at higher levels. se disease in the GI tract. They can be present due to tat are toxic to beneficial bacteria; the use of antibiotic ic flora T INFORMATION titles in the skin, mouth, intestine and mucocutaneou ually every organ system, leading to an extensive arm
evels of beneficial bacteria and increased le Sysbiolic bacteria consist of known pathog number of factors including: consumption of seal contraceptives or other medications; por Normal flora No yeast isolated MICROSCOPIC YEAST Result: Expected: None None - Rare	VEAS VEAS VEAS VEAS VEAS VEAS VEAS VEAS	TINFORMATION TINFORMATION
evels of beneficial bacteria and increased le Dysbiolic bacteria consist of known pathog number of factors including: consumption of and contracestives or other medications; por Normal flora No yeast isolated MICROSCOPIC YEAST Result: Expected: None None - Rare The microscopic finding of yeast in the sto	vels of commensal bacteria. Certain commensal bacteria commensal bacte	ria are reported as dysbiotic at higher levels. se disease in the GI tract. They can be present due to tat are toxic to beneficial bacteria; the use of antibiotic ic flora T INFORMATION titles in the skin, mouth, intestine and mucocutaneou tualy every organ system, leading to an extensive arra a is associated with broad-spectrum antibiotics of Symptoms may include abdominal pain, cramping an of yeast, disparity may exist between cuturing an
evels of beneficial bacteria and increased le Sysbiolic bacteria consist of known pathog number of factors including: consumption of seal contraceptives or other medications; por Normal flora No yeast isolated MICROSCOPIC YEAST Result: Expected: None None - Rare	VEAS VEAS VEAS VEAS VEAS VEAS VEAS VEAS	TINFORMATION The skin, mouth, intestine and mucoculaneou taily every organ system, leading to an extensive arra a is associated with broad-spectrum antibiotics of Symptoms may include abdominal pain, cramping an


Comprehensive Stool Analysis / Parasitology x3

PARASITOLOGY	NFORMATION
have the potential to cause damage to the within the intestine generally confirms organism through fecal-oral contaminal parasitic burden, migration, blockage and hypersensitivity reactions and cytotoxicity	air host. The presence of any parasite that the patient has acquired the tion. Damage to the host includes pressure. Immunologic inflammation, also play a large role in the morbidity
helminths. The protozoa typically have tw the metabolically active, invasive stage vegetative inactive form resistant to u outside the human host. Helminths are protozoa, helminths can be either free-livi	o stages; the trophozoite stage that is and the cyst stage, which is the nfavorable environmental conditions large, multicellular organisms. Like ng or parasitic in nature. In their adult
or without mucus and or blood, fever, r these symptoms do not always occur. C not be diagnosed or eradicated. If left u can cause damage to the intestinal lining illness and fatigue. 3Chronic parasitic inf increased intestinal permeability, initiabil movements, malabsorption, gastritis or il	nausea, or abdominal pain. However onsequently, parasitic infections may intreated, chronic parasitic infections and can be an unsuspected cause of ections can also be associated with le bowel syndrome, irregular bowel ndigestion, skin disorders, joint pain,
In some instances, parasites may enter organs causing severe organ diseas cysticercosis. In addition, some larval mi rare cases hyper infection syndrome	the circulation and travel to various es such as liver abscesses and gration can cause pneumonia and in with large numbers of larvae being
parasitic disease, parasitology x3 is record	mmended. This exam is not designed
RDIA/CRYPTOSPORIDIUM IMMUNOASSAY	
infects the s	stinalis (lamblia) is a protozoan that mall intestine and is passed in stool
Neg can be sp	by the fecal-oral route. Waterborne is the major source of giardiasis. idium is a coccidian protozoa that read from direct person-to-person aterborne transmission.
	Intestinal parasites are abnormal inhabit have the potential to cause damage to the within the intestine generally confirms organism through fecal-oral contaminat parasitic burden, migration, blockage and hypersensitivity reactions and cytotoxicity of these diseases. The infective dose of and repeat encounters can be additive. There are two main classes of intestinal helminths. The protozoa typically have two the metabolically active, invasive stage vegetative inactive form resistant to un outside the human host. Helminths are protozoa, helminths can be either free-livi form, helminths cannot multiply in humans in general, acute manifestations of parasi or without mucus and or blood, fever, in these symptoms do not always occur. Co not be diagnosed or eradicated. If left u can cause damage to the intestinal lining illness and fatigue. (Chronic parasitic infi increased intestinal permeability, irritabl movements, malabsorption, gastritis or in allergic reactions, and decreased immune in some instances, parasites may enter organs causing severe organ diseas cysticercosis. In addition, some laval mi rare cases hyper infection syndrome v produced and found in every tissue of the One negative parasitology x1 specimen parasitic disease, parasitology x3 is recor to detect Cryptosporidium spp, Cyclospor by detect Cryptosporidium spp, Cyclospor by detect Cryptosporidium spp, Cyclospor by detect Cryptosporidium spp, Cyclospor

Thyrog Please Lo as	w positi ymptomat	Antil ve Th ic po	body yrogle pulat:	obulin an			IU/mL IU/mL seen in a por		e 01
Data		ur. 1993			terre in the				
	H ₂ = Hydro Sample	ppm H ₂		Total H2 + CH4	CO ₂	80 70		A	
1	Baseline	46	13	59	OK		<u>~~</u>	0 1	9
2	20 min	49	15	64	OK	50	And /	1	
3	40 min	51	13	64	OK	40	- \\/A	2	11-1
4	60 min	22	10	32	OK	30	18/		12
5	80 min	43	15	58	OK	20	X		X
6	100 min	55	11	66	OK	10 0-	0-0-0-0	-0-0-1	- O- A
7	120 min	61	14	75	OK			<u> </u>	
8	140 min	44	12	56	OK				8 9 10
9	160 min	51	13	64	OK				
10	180 min	20	9	29	OK	b Hydroge	n 0 Mothana he sample and render the sam	-0- Combined Hys	
a Antaba (N/A Analysis	and the entries fo	ar H ₂ and CH	, will be high Combined	lighted. See notes baseline total	section for de		ted. If the sample is otherwise lighted and blank or highlighte 59 39		
Gre	atest CH, incre	ase over	the lowest	preceding value	ue within fir	st 120 minutes	= 5		≤12ppm
						within first 120 m	-	н	≤15ppm
nterpretati									
	ed - Elevated H	lydrogen					west preceding value with ve of bacterial overgrowth		OSITIVE
SIBO Suspect	ted - Elevated M	Methane					west preceding value with ve of bacterial overgrowth		GATIVE
BO Suspecte	d - Elevated C	ombined	Increase				alues greater than 15ppm bacterial overgrowth,	over D	OSITIVE

Not surprisingly, he had significant dysbiosis, as well as Blastocystis hominis and Dientamoeba fragilis. His TPO antibodies were high at 184. He also had pretty significant SIBO and elevated mercury levels, 25.5 for methylmercury and 0.663 for inorganic mercury, for a total mercury of 26.2, which is one of the highest I've ever seen on the Quicksilver lab.

Note that some studies have shown a link between elevated mercury levels and thyroid antibody production, and removal of dental amalgams has been shown to reduce thyroid antibody levels.

TESTS	RESULT	FLAG	UNITS	REFERENCE	INTERVAL	LAB
TSH+T4F+T3Free						
TSH	0.546		uIU/mL	0.450	- 4.500	01
Triiodothyronine, Free, Serum	3.3		pg/mL	2.0	- 4.4	01
T4, Free (Direct)	1.39		ng/dL	0.82	- 1.77	01

After treating for gut issues and heavy metal toxicity, we retested his thyroid panel, and as you see, the numbers completely normalized and are now in the optimal range. This doesn't always happen. Sometimes we still need to address the thyroid directly, but it happens often enough that I will typically address underlying issues in cases of subclinical hypothyroidism and low T4-to-T3 conversion first before treating the thyroid directly.